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Abstract— Deep learning is a mainstay of modern-
day classification tasks. There are a wide variety of
deep learning packages publicly available including some
developed by leading tech companies such as Google and
Facebook. These packages ease the process of developing
complicated networks for different tasks. In order to
understand which tools are best for a given task, it is
imperative to understand the strengths and weaknesses
of each from a systems performance standpoint. In this
paper, we will attempt to benchmark the performance
of two major frameworks within Python: PyTorch and
TensorFlow. We will compare their performance across
a variety of machines in terms of both their speed and
power efficiency by training and testing a K-nearest
neighbors classifier, a simple Neural Network, and a deep
Convolutional Neural Network using the MNIST dataset.
We will measure speed efficiency by measuring time to
train over a series of tests.

I. INTRODUCTION

Modern progress in deep learning has given a rise
to machine performance in a variety of tasks, includ-
ing, but not limited to image classifications, image
segmentation, and natural language translation [1]. To
better develop and deploy deep learning models quickly
and effectively, multiple frameworks have been created.
Leading tech companies and research institutions have
been developing deep learning networks for industrial
and research purposes: Google with TensorFlow [2],
Meta with PyTorch [3], and Berkeley with Caffe [4],
for example.

One of the most common tasks that deep learning
models try to achieve is classification. In the image
domain, the MNIST dataset [5] is often used as a
benchmark to evaluate a model’s performance. The
dataset consists of gray-scales images of handwritten
digits, split into training and testing sets. The goal
of a model on this dataset is to identify which digit
appears in the image. This dataset does not require pre-
processing efforts, therefore, it is a good starting point
for researchers to evaluate their classification models.

Developing wide and deep networks to achieve state-
of-the-art performance in a variety of tasks has been
the main focus of the deep learning community for
a while. However, to make deep learning ideas not
simply an academic curiosity, more attention should be
paid toward the performance metrics of these models.
With that in mind, in this paper, we aim to compare
the two most dominant frameworks in the community,
TensorFlow [6], and PyTorch [3]. Having developed
different models in both frameworks, including a K-
nearest neighbors classifier, a simple neural network
with a few hidden layers, and a complex deep neural
network utilizing convolutional layers, our contribu-
tions consist of comparisons between the training time
and power usage of the models in both frameworks.
In all cases, the work done in this paper utilizes the
MNIST Handwriting dataset [5].

Another important development in recent years
comes from hardware not software. Recent develop-
ments in CPU, GPU and System on a Chip (SoC)
engineering tactics have lead to increased optimizations
across the board in all of computing, not just specif-
ically deep learning. [7] The opening of the CUDA
architecture by NVIDIA as well as simple architecture
increases by Intel and AMD in processors in recent
years have led to massive increases in many aspects of
matrix level computing. One of the most significant
changes in recent times is the onset of laptop and
desktop level SoC’s, a system typically reserved for
mobile chips, which is being flagshipped by Apple and
their M1 chip for their transition to “Apple Silicon”. [7].

The difference between a SoC and other architectures
is that the SoC combines multiple hardware objects into
single areas, such as GPU and CPU, as well as other
potential optimizing areas. Figure 1 [8], is from Apple’s
diagram of their ARM based M1 chip during their press
release for the 2020 release.

The M1 contains numerous aspects other than a
simple GPU, CPU, and RAM set up. One item that is



Fig. 1: Apples press diagram of M1 Architecture, from
2020, November 10 Apple Event announcing its release.

interesting is the Neural Engine and Machine Learning
Accelerators. Important is the M1’s architecture on the
physical CPU die. It contains 8 cores, 4 of which are
what they call ”high performance” and 4 are ”effi-
ciency”. At the 2020 Apple Event [8] they claim that an
“efficiency core” is around half as powerful as the high
performance core. To aid users in taking full advantage
of the M1 chip they released documentation for users
to implement their “ML Compute” Framework into
applications [9]. These extra applications paired with
the fact that all ARM MacOS Systems will be running
an M1 or similar chip, has led Apple to tightly couple
the operating system and hardware system in order to
maximize performance.

The layout of this paper includes previous related
work in section 2, our approach in section 3, and the
results of our contributions in section 4.

II. RELATED WORK

Many deep learning products and research have been
created and conducted using different combinations of
hardware and software. For the hardware side, the
most dominant processors are GPU and CPU. For
the software side, the most common frameworks are
TensorFlow and PyTorch created by Google and Meta
respectively. [10]

The main difference between a CPU and a GPU is
the number of cores. While CPUs have fewer cores,
each core is much faster and much more capable. As
a result, it is great at sequential tasks. GPUs, on the
other hand, have more cores; however, its cores are
much slower, making it great for parallel tasks. [10]

PyTorch and TensorFlow utilize CPUs and GPUs
to run the process. These deep learning frameworks
ease the process of creating complicated deep learn-
ing models by abstracting different model layers and
automating the process of calculating the gradient. The
main difference between the two is that PyTorch adapts

a dynamic graph approach, meaning that the graph
structure is defined on-the-fly via the actual forward
computation [11] whereas TensorFlow adapts a static
graph approach, meaning that the users define the graph
completely and then inject data to run [2].

Many deep learning architectures and Machine
Learning algorithms have been evaluated on the
MNIST dataset, both in TensorFlow and PyTorch [12].
In [13], Ketkar gives an overview of PyTorch as a
tool to develop deep learning models. Similarly, in [6],
Abadi et al. provide an overview of the TensorFlow
framework. Using these frameworks, Siddique et al.,
developed different CNN with varying number of con-
volutional layers and compare their performance [14].
Most similar to our work, Jain et al. explored training
Deep Neural Networks across multiple CPU architec-
tures using both frameworks [15]. The authors evalu-
ated the performance characterization of deep network
models on different CPU architectures. In this work,
we will focus on the performance of different networks
built by both frameworks, including training time and
power efficiency on different hardware systems: AMD
Ryzen 5 3600x CPU, Nvidia RTX 2070 Super GPU,
and Apple’s M1 SoC 2020 MacBook Pro.

III. APPROACH

Our approach to testing the efficiency of PyTorch and
TensorFlow involved building a K-Nearest Neighbors,
a simple Neural Network, and a Convolutional Neural
Network model on the MNIST dataset on each of three
different hardware systems: an AMD Ryzen 5 3600x
CPU, Nvidia RTX 2070 Super GPU, and Apple’s M1
SoC 2020 MacBook Pro. Each of the models were built
using code from prior work measuring accuracy on the
MNIST dataset.[16] [17]

To evaluate the systems, we utilized two major eval-
uation methods: training time and power consumption.
The accuracy of the models was a secondary priority
as success was evaluated based on direct comparisons
of these two metrics as we run the models on different
hardware systems mentioned above.

For each of the three model types, we used a simple
training and testing split of the dataset randomized for
each iteration. This was chosen as a standard practice
to help limit bias towards any architecture. Models
were considered accurate when they correctly identified
handwritten characters in the testing set that has not
been included in the training set.

To measure the training run time, each model was
built 20 times on each system. For each of these epochs,



run time was measured using built-in Python tools from
the Time library. For each run, only the time to perform
training is measured. Dataset filtering and other I/O’s
are not included in the measurement.

For each of these 20 models, predictions were made
on the testing set to calculate a model’s accuracy.

To measure power consumption we utilized the
Running Average Power Limit (RAPL) system. [18]
Originally developed by Intel this system has since
been extended to support newer AMD Ryzen proces-
sors as well. RAPL was implemented to measure total
Joules used by a given hardware component for the
entire 20 epoch training cycle and then stored for later
comparisons. For CPU runs, we measured the energy
usage of the CPU, and for GPU runs we measured the
power called by the GPU system. We were unable to
measure M1 power usage.

IV. RESULTS

To compare the overall efficiency of the different
systems, we evaluated the results using two different
metrics: training time and power efficiency. A break-
down of each system’s performance for each method is
contained below.

Figure 2 displays the median training times for
each system and framework along with the standard
deviation and quartiles over the 20 Training epochs
for the Simple Neural Networks. The corresponding
mean and standard deviations are included in Table I
while the quartiles underlying the graph are contained
in Table II. Figure 3, Table III, and Table IV contain
the same information for the Convolutional Neural
Network training times.

Figure 4 and Figure 5 display the individual run
times of each epoch for the different Frameworks on
M1 and CPU, respectively. The key additions of these
graphs are the inclusion of Scikit-learn’s K-nearest
neighbor algorithm as a baseline. More comment on
this comparison is included in the analysis below.

Time (in seconds) CPU GPU M1
PyTorch 51.29 ± 1.14 16.51 ± 0.17 89.55 ± 10.47

TensorFlow 8.62 ± 0.17 9.45 ± 0.30 17.83 ± 0.98

Table I: Average Training Times and Standard Devia-
tions for Simple Neural Networks

A. Framework Comparison

TensorFlow significantly outperforms PyTorch
across all systems. In all cases, the average run time
in PyTorch is greater than 3 standard deviations (and

Fig. 2: Training times for 20 Simple Neural Networks
on each Framework and Hardware system.

Time (in seconds) Q1 Median Q3
PyTorch - CPU 50.48 50.93 52.05

TensorFlow - CPU 8.49 8.61 8.74
PyTorch - GPU 16.45 16.51 16.62

TensorFlow - GPU 9.25 9.34 9.46
PyTorch - M1 82.80 88.39 89.45

TensorFlow - M1 17.41 17.53 17.66

Table II: Training Time quartiles for simple Neural
Networks

Fig. 3: Training times for 20 Convolutional Neural
Networks on each Framework and Hardware system.

Time (in seconds) CPU GPU M1
PyTorch 184.51 ± 4.67 58.48 ± 1.06 1744.37 ± 23.71

TensorFlow 155.13 ± 0.96 28.21 ± 0.29 256.13 ± 2.80

Table III: Average Training Times and Standard Devi-
ations for Convolutional Neural Networks



Time (in seconds) Q1 Median Q3
PyTorch - CPU 181.23 182.25 185.84

TensorFlow - CPU 154.64 155.26 155.76
PyTorch - GPU 57.82 58.39 59.24

TensorFlow - GPU 28.02 28.26 28.45
PyTorch - M1 1723.97 1744.43 1764.14

TensorFlow - M1 253.74 256.05 258.25

Table IV: Training Time quartiles for Convolutional
Neural Networks

Fig. 4: Training times for each of 20 epochs for each
Framework on M1.

Fig. 5: Training times for each of 20 epochs for each
Framework on CPU.

usually many more) away from the average run time
in TensorFlow.

As the box plots indicate, PyTorch is frequently
several orders of magnitude slower than TensorFlow. In
every situation, the training time for TensorFlow falls
well below the training time for PyTorch even when
accounting for a margin of error.

Accuracy Per Model Percentage
PyTorch NN 92.31 ± 0.00172

TensorFlow NN 95.83 ± 0.0025
PyTorch CNN 99.30 ± 0.0023

TensorFlow CNN 99.13 ± 0.0013
KNN 91.2365 ± 0.00

Table V: Accuracy Averages for Each Model Type

Further evidence of this is included in Figure 4 and
Figure 5. These graphs demonstrate a clear and consis-
tent order of training time for the different frameworks
with TensorFlow always being faster than PyTorch. No-
tably, Scikit-learn’s k-nearest neighbor implementation
runs in virtually no time on both the CPU and M1
hardware. The framework is not compatible with GPU.
This makes sense as KNN is a significantly simpler
algorithm than NN and CNN. However, unlike the
other frameworks, this increase in efficiency comes
with a trade-off of a significant decrease in accuracy as
displayed in Table V especially when compared against
CNNs.

Power Usage CPU Average GPU Average
PyTorch NN 45993 ± 1013.7 21.350 ±0.49252

PyTorch CNN 194720 ± 1823.3 68.989 ±2.2430
TensorFlow NN 8500.3 ± 254.92 4.9401 ±0.14866

TensorFlow CNN 182270 ± 6135.3 35.433 ±0.90840

Table VI: Work Done Per Model

Additionally we can see in Table VI that in each
situation the power usage for PyTorch implementations
is higher than that of TensorFlow. This follows what
should be observed based on theory, when you follow
the Work equation of classical physics where Work
(Joules) will be equivalent to the product of power
and time. In each scenario above the operations are
bound by processing power and all components should
be running at near electrical capacity for the duration
of the runs.

Finally, the bar plots in Figure 6 show the individual
run times for each of the training epochs divided by
hardware and framework. As seen with the CPU and
M1 from earlier, these graphs clearly demonstrate that
TensorFlow was consistently faster than PyTorch with
zero instances of the TensorFlow training time being
slower than a single similar PyTorch iteration.

When using the simple Neural Networks, Tensor-
Flow sees an improvement on the CPU of nearly 6x



Fig. 6: Training Times for each epoch

compared to PyTorch compared to only 1.75x on the
GPU. However, with the Convolutional Neural Net-
works, TensorFlow gives up some of its edge in CPUs
while gaining ground in GPUs. Specifically, PyTorch
is 1.2x slower on the CPU while over 2x slower on the
GPU.

On the M1, TensorFlow is over 5x faster training a
simple Neural Network while nearly 7x faster training
a Convolutional Neural Network. As discussed above,
given the tight coupling between TensorFlow and Ap-
ple, this result is expected.

In regards to accuracy, Figure 8 appears to show
a clear correlation to be achieved with more complex
models on this solution. The simple KNN model was
fully deterministic revealing the same accuracy every
time when using a k value of 5. Interestingly on the
Neural Network, the base models given by PyTorch
appear to be significantly less accurate than those
given by default TensorFlow models. With the PyTorch
system struggling to even beat out KNN models that
run significantly faster. In the most complex CNN
models however both PyTorch and TensorFlow are

nearly indistinguishable at upwards of 99% accuracies.

The M1 results, however, are drastically different
than other comparisons. This is with reason and will
be discussed later in M1 Differences.

Notably, our results differed significantly from prior
work specifically [15] which found evidence that Py-
Torch tends to outperform TensorFlow on GPUs. We
believe the reason for this discrepancy lies in the
version of TensorFlow which we were using. Our
experiments were run using TensorFlow 2.0 which
released in September 2019 after [15] was published.
The updates to TensorFlow’s framework appear to have
significantly improved its performance on GPUs.

Overall, the results indicate that the more computa-
tionally expensive a problem is, the better TensorFlow
is compared to PyTorch. In terms of training speed
and power consumption, TensorFlow appears to have
significantly less overhead and, in our experiments, is
superior regardless of the parameters.



Fig. 7: Work Measurement Graph for Each Run

Fig. 8: Accuracy Graph for Each Run

B. Hardware Comparison

Given the nature of the MNIST classification prob-
lem and previous research such as [15], it is unsur-
prising that the GPU tends to significantly outperform
both the CPU and M1. The lone exception is train-
ing the Simple Neural Network using TensorFlow in
which case the CPU outperforms the GPU in terms of
speed. This seems to be a consequence of TensorFlow’s
overall efficiency. While TensorFlow is still quick on
the GPU, it is fast enough on the CPU that the ad-
ditional overhead results in a decrease in performance.
When training a much more complicated Convolutional
Neural Network, the GPU is nearly 6x faster than the
CPU suggesting that the improvement in performance
outweighs any additional overhead.

For both the simple and Convolutional Neural Net-
works, the CPU outperforms M1. On the Simple Neural
Network, PyTorch is approximately 1.75x slower on
M1 than CPU while TensorFlow is approximately 2x
slower. However, for the Convolutional Neural Net-
work, TensorFlow is only 1.7x slower on M1 than CPU
while PyTorch is 9.5x slower. TensorFlow’s coupling
with M1 appears to allow it to have the roughly the
same relative training time to the CPU regardless of
the problem. PyTorch, on the other hand, is not well

equipped to handle large problems on the M1 resulting
in extra overhead and a dramatic slowdown in training
time.

In regards to power usage based on different hard-
ware types, it appears to similarly be bound more
strictly by the run time than the hardware being used.
GPU’s significant reduction in run time is also con-
tributing to significant reduction in work being done
by the system also following what classical physics
would lead us to believe. Although no hard testing
could be confirmed, it can also easily be inferred based
on these results that the M1 power usages would be
follow the same pattern and be mainly determined by
the maximum running wattage and the run time of the
SoC.

C. M1 Differences

The largest difference by far in the two systems
comes on Apple’s M1 SoC. PyTorch appears to take
significantly more time than the TensorFlow implemen-
tation. For example, the difference is around 4x the time
length on a simple Neural Network and around 8x on
the CNN system.

Initially, this appeared to be an error due to PyTorch
running in x86 architecture mode using Apple’s Rosetta
2 system. This theory was debunked by deleting the
Rosetta 2 system and achieving the same results leading
to a deeper dive into the implementation of each
architecture to arrive at the working theory.

The current theory is that TensorFlow’s implemen-
tation is built with the M1 in mind and utilizes the
full extent of the M1 SoC using the ML Compute
framework, while PyTorch is a simple ARM compi-
lation of its x86 counterpart. This theory is supported
by TensorFlow being implemented for the Mac by
Apple itself [19] and the time increases on PyTorch
during outlier experimental runs on Neural Network
experiments.

The significance by Apple developing the M1 port
for TensorFlow is fairly obvious, they are in the best
position to have the fullest knowledge of incorporating
the M1 SoC’s systems into code, since they created
the chip. While a third party such as Meta and Py-
Torch would have to learn the documentation for ML
Compute and implement it using that alone - a much
more tedious task.

The other piece of evidence is less obvious, notice-
ably the M1 Neural Network runs have 2 outlier runs
that took significantly more time than the rest of the
runs, specifically runs 9 and 10 in Figure 6. According



to timestamps, run 9 for PyTorch began at 09:59:52am
and would have still been running at 10:00:00am. The
working theory is that when the time reached top of
the hour some part of the system began doing update
checks and these checks did not conclude until the
TensorFlow run of Run 10. As explained at Apple’s
M1 Event [8] these updates are sent to the M1 CPU’s
efficiency cores with priority. Interestingly, run 10 of
PyTorch which was completely in the time frame of
these suspected updates has a time increase of almost
the exact 50 percent that would be thought to occur
theoretically by losing access to efficiency cores on a
pure CPU system. While run 9 of TensorFlow, also
within the update time frame meets a time increase of
far below the expected 50 percent increase. This time
discrepancy is evidence in support of our theory that
the PyTorch system is a simple ARM port that runs
on only the CPU of the M1, while the TensorFlow
implementation takes full advantage of the M1 SoC.
During the application updates, the PyTorch system
lost access to its 4 efficiency cores and resulted in
lower pluralisation performance increases nearly exact
to what would be expected theoretically. While Ten-
sorFlow also lost access to these 4 cores it was not as
heavily effected.

V. CONCLUSION/FUTURE WORK

In all scenarios, users should see significantly less
time usage on a TensorFlow system when compared to
a PyTorch system. This is best shown using an SoC
system such at Apple’s M1 Macbook.

Areas for further research would include testing on
other hardware configurations. With the recent release
of the M1 Pro and M1 Max SoC’s it would be in-
teresting to see how their performances compare to
this system. Another area of further research would
be further exploring the differences between ARM port
theory for PyTorch on the M1 Mac, specifically gaining
more test runs that cross events that take priority over
the efficiency cores and a deep dive into the actual code
implementation for the system to see if they attempt to
use the ML Compute framework.

Another area of research that could be performed is
their performance on different hardware architectures
such as a Tensor Processing Units that have been
emerging in the field in recent years. It can be explored
how these chips highly optimized for machine learning
calculations could improve processing power.

Additionally we could look into other machine learn-
ing applications besides classification, such as natural

language processing or regression models to compare
performance between architectures there.
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